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1. Introduction

The main target of lattice studies of the Higgs-Yukawa sector of the electroweak standard

model is the non-perturbative determination of lower and upper bounds of the Higgs boson

mass [1, 2] as well as its decay properties. There are two main developments which warrant

to reconsider these questions: first, with the advent of the LHC, we are to expect that

properties of the standard model Higgs boson, such as the mass and the decay width,

will be revealed experimentally. Second, there is, in contrast to the situation of earlier

investigations of lattice Higgs-Yukawa models, a consistent formulation of an exact lattice

chiral symmetry [3] based on the Ginsparg-Wilson relation [4].

Before questions of the Higgs mass bounds and decay properties can be addressed,

the phase structure of the model needs to be investigated in order to determine the (bare)

couplings in parameter space where eventual simulations of phenomenological interest can

be performed. There has been a large activity of investigating lattice Higgs-Yukawa models

in the past, see e.g. refs. [5 – 11] for reviews. In particular, the phase structure of lattice

Higgs-Yukawa models was investigated in great detail, see e.g. refs. [12 – 20] for a still in-

complete list. However, in these investigations, the lattice formulation of the corresponding

Higgs-Yukawa theory broke explicitly chiral symmetry.

This situation changed when it was realized that the Ginsparg-Wilson relation [4]

leads to the notion of an exact lattice chiral symmetry [3] allowing thus to go beyond the

earlier models. Based on this development, the interest in lattice studies of Higgs-Yukawa

models has been renewed [21 – 25]. Here, we follow Lüscher’s proposition for a chirally

invariant and hence consistent lattice Higgs-Yukawa model given in ref. [3]. In particular,

we want to address here the question whether the phase structure remains as complex as has

been found out in the earlier work mentioned above. Additional and phenomenologically

more interesting questions concerning the behaviour of the renormalized Higgs and Yukawa

couplings will be addressed in future works.
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In [25] we have studied the phase structure of this chirally invariant Higgs-Yukawa

model by means of a large Nf computation, where Nf denotes the number of fermion

generations. We found a complex phase structure that resembles qualitatively the one

of earlier lattice Higgs-Yukawa models, see e.g. [14], which, however, were lacking chiral

symmetry. In the present paper we want to confront the results obtained in the large Nf

approximation with direct numerical simulations for finite values of Nf . We remark that

in the present work, as in ref. [25], we neglect the gauge degrees of freedom and consider

the pure scalar-fermion sector of the electroweak standard model.

To be more specific, we consider here a four-dimensional, chirally invariant SU(2)L ×
SU(2)R Higgs-Yukawa model discretized on a finite lattice with L lattice sites per dimension

such that the total volume becomes V = L4. We set the lattice spacing to one throughout

the paper. The model contains one four-component, real Higgs field Φ and we consider

Nf fermion doublets represented by eight-component spinors ψ(i), ψ̄(i) with i = 1, . . . , Nf .

Furthermore, there are Nf auxiliary fermionic doublets χ(i), χ̄(i) serving as a construction

tool in the creation of a chirally invariant Yukawa interaction term. Once the chiral in-

variance is established these unphysical fields are integrated out leading to a more complex

model depending only on the Higgs field Φ and the Nf physical fermion doublets ψ(i). The

partition function is written as

Z =

∫

DΦ

Nf∏

i=1

[

Dψ(i) Dψ̄(i) Dχ(i) Dχ̄(i)
]

exp
(

−SΦ − Skin
F − SY

)

(1.1)

with the total action being decomposed into the Higgs action SΦ, the kinetic fermion action

Skin
F , and the Yukawa coupling term SY . It should be stressed once again that no gauge

fields are included within this model.

The kinetic fermion action describes the propagation of the physical fermion fields

ψ(i),ψ̄(i) in the usual manner according to

Skin
F =

Nf∑

i=1

∑

n,m

ψ̄(i)
n D(ov)

n,mψ(i)
m − 2ρχ̄(i)

n 1n,mχ(i)
m (1.2)

where the four-dimensional coordinates n,m as well as all field variables and coupling

constants are given in lattice units throughout this paper. The (doublet) Dirac operator

D(ov) = D̂(ov) ⊗ D̂(ov) is given by the Neuberger overlap operator D̂(ov), which is related to

the Wilson operator D̂(W ) = γE
µ

1
2(∇f

µ + ∇b
µ) − r

2∇b
µ∇f

µ by

D̂(ov) = ρ

{

1 +
Â

√

Â†Â

}

, Â = D̂(W ) − ρ, 1 ≤ ρ < 2r (1.3)

with ∇f
µ, ∇b

µ denoting the forward and backward difference quotients. Note that in absence

of gauge fields this kinetic part corresponds to the one of free fermions which will be

exploited in the numerical construction of the overlap operator later. In particular, the

eigenvalues of D̂(ov) can be computed analytically. In momentum space with the allowed
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four-component momenta

p ∈ P =

{

(−π, π]⊗4 : for L = ∞
{2πn/L : n ∈ N0, n < L}⊗4 : for L < ∞ (1.4)

the eigenvalues of the doublet operator D(ov) are given by

νǫ(p) = ρ + ρ · ǫi
√

p̃2 + 2rp̂2 − ρ
√

p̃2 + (2rp̂2 − ρ)2
, p̃µ = sin(pµ), p̂µ = sin

(pµ

2

)

, ǫ = ±1. (1.5)

We remark that the auxiliary fields χ(i) do not propagate at all and that their contri-

bution to Skin
F is chosen such that the model will obey an exact lattice chiral symmetry.

The Higgs field couples to the fermions according to the Yukawa coupling term

SY = yN

∑

n,m

Nf∑

i=1

(ψ̄(i)
n + χ̄(i)

n )

[1n,m
(1 − γ5)

2
φn + 1n,m

(1 + γ5)

2
φ†

n

]

︸ ︷︷ ︸

Bn,m

(ψ(i)
m + χ(i)

m ) (1.6)

where yN denotes the Yukawa coupling constant and Bn,m will be referred to as Yukawa

coupling matrix. Here the Higgs field Φn is rewritten as a quaternionic, 2 × 2 matrix

φn = Φ0
n1− iΦj

nτj, with ~τ denoting the vector of Pauli matrices, acting on the SU(2) index

of the fermionic doublets. Due to the chiral character of this model, left- and right-handed

fermions couple differently to the Higgs field, as can be seen from the appearance of the

projectors (1 ± γ5)/2 in the Yukawa term. Multiplying out the involved Gamma- and

Pauli-matrices one can rewrite the coupling matrix in the compactified form

Bm,n = δm,n · B̂(Φn), B̂(Φn) =

(

Φ0
n1+ iΦ3

nγ5 Φ2
nγ5 + iΦ1

nγ5

−Φ2
nγ5 + iΦ1

nγ5 Φ0
n1− iΦ3

nγ5

)

(1.7)

being block diagonal in position space. The model then obeys an exact, but lattice modified,

chiral symmetry according to

δψ(i) = iǫ

[

γ5

(

1 − 1

2ρ
D(ov)

)

ψ(i) + γ5χ
(i)

]

, δχ(i) = iǫγ5
1

2ρ
D(ov)ψ(i), δφ = 2iǫφ (1.8)

δψ̄(i) = iǫ

[

ψ̄(i)

(

1 − 1

2ρ
D(ov)

)

γ5 + χ̄(i)γ5

]

, δχ̄(i) = iǫψ̄(i) 1

2ρ
D(ov)γ5, δφ

† = −2iǫφ† (1.9)

recovering the chiral symmetry in the continuum limit [3].

Finally, the lattice Higgs action is given by the usual lattice notation

SΦ = −κN

∑

n,µ

Φ†
n [Φn+µ̂ + Φn−µ̂] +

∑

n

Φ†
nΦn + λN

∑

n

(

Φ†
nΦn − Nf

)2
(1.10)

with the only particularity that the fermion generation number Nf appears in the quartic

coupling term which was a convenient convention for the large Nf analysis. However, this

version of the lattice Higgs action is equivalent to the usual continuum notation

Sϕ =
∑

n

{
1

2

(

∇f
µϕ

)†

n
∇f

µϕn +
1

2
m2

0ϕ
†
nϕn + λ0

(

ϕ†
nϕn

)2
}

, (1.11)
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with the bare mass m0 and the bare quartic coupling constant λ0. The connection is

established through a rescaling of the Higgs field and the involved coupling constants

according to

ϕn =
√

2κNΦn, λ0 =
λN

4κ2
N

, m2
0 =

1 − 2NfλN − 8κN

κN
, y0 =

yN√
2κN

(1.12)

where y0 denotes the Yukawa coupling constant corresponding to the continuum notation.

2. Simulation algorithm

The first step towards a numerical treatment of the considered Higgs-Yukawa model is to

integrate out the fermionic degrees of freedom leading to the effective action

Seff [Φ] = SΦ[Φ] − Nf · log det (M) (2.1)

where the fermionic matrix

M = yNBD(ov) − 2ρD(ov) − 2ρyNB (2.2)

was given in ref. [25].

Since we focus here on checking the validity of our earlier analytical investigation of

the phase structure, which was determined in the large Nf -limit, we will only consider even

values for Nf , allowing to rewrite the effective action according to

Seff [Φ] = SΦ[Φ] − Nf

2
· log det

(

MM†
)

, Nf even . (2.3)

Thus the positivity of the determinant in eq. (2.3) is guaranteed.

For the numerical treatment of the remaining determinant in eq. (2.3) we have im-

plemented an Hybrid-Monte-Carlo (HMC) algorithm [26, 27], with Nf/2 complex pseudo-

fermionic fields ωj according to the HMC-Hamiltonian

H(Φ, ξ, ωj) = SΦ[Φ] +
1

2
ξ†ξ +

Nf/2
∑

j=1

1

2
ω†

j

[

MM†
]−1

ωj (2.4)

where ξ denote the real momenta, conjugate to the Higgs field Φ.

The application of the matrix [MM†]−1 on ωj can then be performed by means of a

Conjugate Gradient algorithm due to the hermiticity of MM†. However, for the compu-

tation of Mx, where x is an arbitrary vector, we exploit the fact that there are no gauge

fields included within our model. The eigenvectors of the used Neuberger overlap operator

D(ov) are therefore explicitly known to be the plane waves

Ψp,ζǫk
n = eip·n · uζǫk(p), uζǫk(p) =

√

1

2

(

uǫk(p)

ζuǫk(p)

)

, ζ = ±1, ǫ = ±1, k ∈ {1, 2} (2.5)
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with uǫk(p) denoting the usual four-component spinor structure

uǫk(p) =

√

1

2

(
ξk

ǫ p̃Θ̄√
p̃2

ξk

)

for p̃ 6= 0 and uǫk(p) =

√

1

2

(

ξk

ǫξk

)

for p̃ = 0. (2.6)

Here ξk ∈ C2 are two orthonormal vectors and the four component quaternionic vector Θ̄

is defined as Θ̄ = (1, i~τ). The corresponding eigenvalues νǫ(p) were given in eq. (1.5). The

operators B and D(ov) are thus both block-diagonal, the first in position space and the latter

in momentum space. In our approach we use a Fast Fourier Transform (FFT) [28] to switch

between the position and momentum representations, such that all operator applications

can be trivially performed due to their actual block-diagonal structure. This is particularly

advantageous for the overlap operator, since the usual construction of this operator would

be based on very demanding approximations, e.g. polynomial approximations.

A second advantage of this approach is that the applied Dirac operator can easily be

replaced by other operators simply by adopting the corresponding eigenvalues.

Concerning the parallelization of the program there are several options. For example

there are efficient parallelized FFT-routines available [28]. Here, however, we use a trivial

- but very efficient - parallelization which is possible due to the large number of fermion

generations Nf . We simply perform each of the Nf/2 force calculations on a separate

computer node.

For the integration of the obtained forces we find the Leap-Frog integration scheme

to be efficient on small lattices. This situation changes with increasing lattice size and

for L ≥ 16 we get better performance with higher order integrators. In that case we use

an order 4 Omelyan-integrator [29, 30]. The integration is then performed over a fixed

trajectory length set to unity with the typical value ǫ = 0.1 for the step size. The step size

ǫ is chosen such that the acceptance rate stays between 80% and 95%.

The observables we will be using for exploring the phase structure are the magnetization

m and the staggered magnetization s,

m =

[
3∑

i=0

∣
∣
∣

1

L4

∑

n

Φi
n

∣
∣
∣

2
] 1

2

, s =

[
3∑

i=0

∣
∣
∣

1

L4

∑

n

(−1)

P

µ
nµ

· Φi
n

∣
∣
∣

2
] 1

2

(2.7)

and the corresponding susceptibilities

χm = V ·
[
〈m2〉 − 〈m〉2

]
, χs = V ·

[
〈s2〉 − 〈s〉2

]
, (2.8)

where 〈. . .〉 denotes the average over the Φ-field configurations generated in the Monte-

Carlo process.

The auto-correlation of our measurements of these observables in the Monte Carlo time

t is then accounted for by applying the Γ-strategy [31]. In this approach the error σA of

an observable A is rewritten as a sum over the correlation function Γ(t) according to

σ2
A =

C(∞)

N
, C(W ) =

W∑

t=−W

Γ(t), Γ(t) =
1

N − |t|
∑

i

[

A(i) − 〈A〉
]

·
[

A(i+t) − 〈A〉
]

(2.9)

– 5 –



J
H
E
P
1
0
(
2
0
0
7
)
0
0
1

W

C
(W

)/
[2

Γ
(0

)]

140120100806040200

45

40

35

30

25

20

15

10

5

0

W

C
(W

)/
[2

Γ
(0

)]

140120100806040200

10

9

8

7

6

5

4

3

2

1

0

(a) (b)

Figure 1: Example for the determination of the auto-correlation time for two different points in

the phase diagram at λN = 0.05, L = 16, Nf = 2, and yN = 30. (a): A point very close to the

phase transition with κN = 0.042. (b): A point farer away from the phase transition line with

κN = 0.060.

where A(i) denotes the measurement of the observable A in the i-th configuration and N is

the total number of collected configurations. The variable W is the window in which the

function Γ(t) is to be summed up. It should be large enough to obtain reliable estimates

of the auto-correlation time τ which is defined through the exponential decay rate of Γ(t)

Γ(t) ∝ exp

(

−|t|
τ

)

(2.10)

and is thus directly connected to the sum C(W ) of the auto-correlation function Γ(t).

Typical examples for the determination of C(∞) by fitting the function C(W ) to a constant

are presented in figure 1. Since the auto-correlation length τ depends strongly on the

distance to the phase transition we have selected one point in the parameter space close

to the phase transition (figure 1a) and one point farer away from it (figure 1b). Both

points correspond, however, to the ferromagnetic phase with a non-vanishing Higgs field

expectation value, i.e. 〈m〉 > 0. For the Higgs field magnetization m as the underlying

observable we find in these examples the auto-correlation times τ
(a)
m = 38.3±1.9 in figure 1a

and τ
(b)
m = 7.3±0.4 in figure 1b. We remark here that the value obtained in figure 1a is the

largest auto-correlation time for the magnetization m encountered in our studies. Although

the auto-correlation time indeed increases when approaching the phase transition, its value

remains acceptable for our purposes. Given that our typical statistics is O(104) Φ-field

configurations, this leads to reliable error determinations for the physical quantities of

interest.

3. Results for small values of the Yukawa coupling constant

In this section we will discuss the structure of the phase diagram at small values of the

Yukawa coupling constant. All numerical results from our simulations are obtained by

employing the algorithm as detailed in section 2. The anticipated structure of the phase

diagram can be inferred from our large Nf computation in ref. [25]. In that large Nf

– 6 –
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Figure 2: An example for the determination of the phase transition points separating the fer-

romagnetic and the anti-ferromagnetic phase from the symmetric phase. We show, as a function

of κN the behaviour of the average magnetization 〈m〉 and staggered magnetization 〈s〉 in panel

(a). The corresponding susceptibilities are plotted in panels (b) and (c). The solid lines are fits to

the finite size formula of eq. (3.2). The parameters chosen are ỹN = 0.632, λ̃N = 0.1, L = 6 and

Nf = 10.

approach the Higgs field and the coupling constants are scaled according to

yN =
ỹN

√
Nf

, λN =
λ̃N

Nf
, κN = κ̃N , Φn =

√

Nf · Φ̃n , (3.1)

where the quantities ỹN , κ̃N , λ̃N , and Φ̃n are held constant in the limit Nf → ∞. Here,

we want to confront this predicted phase structure with the results of our numerical simu-

lations.

At small values of the Yukawa coupling constant, there are two phase transitions when

varying κN : the first is a phase transition from a ferromagnetic (FM) phase, with 〈s〉 = 0

and 〈m〉 > 0, to the symmetric (SYM) phase with 〈m〉 = 〈s〉 = 0. The second corresponds

to a phase transition from the symmetric phase to an anti-ferromagnetic (AFM) phase

with 〈m〉 = 0 and 〈s〉 > 0. These phase transitions are expected to be of second order. To

locate the phase transition points, we decided to fit the data for the susceptibilities χm, χs

in eq. (2.8) as a function of κN according to the — partly phenomenologically motivated

— ansatz

χm,s = Am,s
1 ·

(

1

L−2/ν + Am,s
2,3 (κN − κm,s

crit )
2

)γ/2

, (3.2)

where Am,s
1 , Am,s

2,3 , and κm,s
crit are the fitting parameters for the magnetic susceptibility and

staggered susceptibility, respectively, and ν, γ denote the critical exponents of the Φ4-

theory. Here Am
2,3 (As

2,3) is actually meant to refer to two parameters, namely Am
2 (As

2) for

κN < κm
crit (κN < κs

crit) and Am
3 (As

3) in the other case, such that the resulting curve is not

necessarily symmetric. The phase transition point is then given at the value of κN = κm
crit

(κN = κs
crit) where the magnetic (staggered) susceptibility develops its maximum. We

remark that the ansatz in eq. (3.2), although not being unique, provides a very good

description of our numerically obtained data leading to a reliable determination of the

critical hopping parameters κm,s
crit .

In figure 2 we present a typical example for the determination of the phase transition

points at small values of the Yukawa coupling constant. The average magnetizations 〈m〉
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Figure 3: The phase diagram at small Yukawa coupling constants together with the L = ∞
prediction of the large Nf calculation. The dashed lines denote second order phase transitions

while the solid line marks a first order transition. The data with open squares were obtained on

an 84-lattice while the ones represented by open circles were measured on 64-lattices. These results

were obtained at λ̃N = 0.1 and Nf = 10.

and 〈s〉 as well as the corresponding susceptibilities are shown as a function of κN . We

clearly observe the vanishing of the magnetization and the staggered magnetization when

the symmetric phase is entered (except for some small finite volume effects). Associated

with these transitions are peaks in the susceptibilities. Note that the data for the suscepti-

bilities are fitted very well using the ansatz of eq. (3.2), allowing for a good determination

of the critical points.

Using the strategy just described we computed the values of κm
crit and κs

crit for various

Yukawa coupling constants ỹN < 5 holding the quartic coupling λ̃N = 0.1 constant. In

figure 3 we summarize the numerical results for the phase structure as obtained on 84-

and 64-lattices at Nf = 10 and compare them to the analytical Nf = ∞, L = ∞ phase

structure. As expected we observe a symmetric (SYM), a ferromagnetic (FM) and an anti-

ferromagnetic (AFM) phase, with the symmetric phase bending strongly towards smaller

values of the critical hopping parameter when the Yukawa coupling constant is increased.

As a general remark we note here that the simulations become extremely demanding

when entering the anti-ferromagnetic phase, due to an increasingly bad condition number

of the fermionic matrix M. Within the anti-ferromagnetic phase we thus only present

numerical results obtained on 64-lattices throughout this paper.

Besides these three phases also a fourth, somewhat peculiar phase that can appear

at intermediate values of the Yukawa coupling constant was predicted by our analytical

investigation. This is the so-called ferrimagnetic (FI) phase where both, the average mag-

netization as well as the average staggered magnetization, are non-zero, i.e. 〈m〉 > 0 and

〈s〉 > 0. It was found that such a ferrimagnetic phase should exist deeply inside the

anti-ferromagnetic phase [25]. In figure 4 we provide evidence for the existence of this

ferrimagnetic phase. Its location within the phase diagram is in good agreement with the

analytical prediction. However, the ferrimagnetic phase is not the prime target for our

eventual interest and hence we do not further investigate this phase here.

Concerning the order of the encountered phase transitions we find that the SYM-FM
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Figure 4: Evidence for the ferrimagnetic phase with 〈m〉 > 0 and 〈s〉 > 0 inside the anti-

ferromagnetic phase. The behaviour of the average magnetization 〈m〉 and staggered magnetization

〈s〉 is shown in panel (a) as a function of κN for ỹN = 3.162, λ̃N = 0.1, Nf = 10, and L = 6. The

corresponding magnetic susceptibility is shown in panel (b). From left to right its three observable

peaks correspond to the phase transitions AFM-FI, FI-AFM, and SYM-FM. From the large Nf ,

L = ∞ calculation the ferrimagnetic phase was expected to occur approximately at κN ≤ −0.27.

as well as the SYM-AFM phase transition seem to be of second order in accordance with

the continuous behaviour of 〈m〉 and 〈s〉 as seen e.g. in figure 4a. This is in contrast to the

direct FM-AFM phase transition that should occur at intermediate values of the Yukawa

coupling constant according to our large Nf computation. From the analytical considera-

tions we expect this transition to be of first order. To clarify this we show in figure 5 an

example for such a phase transition as seen in the numerical simulations. One can clearly

observe an abrupt jump in 〈m〉 and 〈s〉 in figure 5a indicating a discontinuous phase tran-

sition. In subfigures (b) and (c) we furthermore present an example for a tunneling event

between two ground states close to the critical value κcrit of the hopping parameter serving

as another strong indication for the first order nature of the phase transition at interme-

diate values of the Yukawa coupling constant. However, we do not study the order of the

phase transition in great detail here, since this is not in our main interest.

Qualitatively, all presented findings are in excellent accordance with our large Nf

calculations in ref. [25]. On a quantitative level, however, the encountered deviations in

figure 3 need to be further addressed. These deviations can be ascribed to finite volume

effects as well as finite Nf corrections. Here we start with a discussion of the finite volume

effects.

The location of the phase transition points can be strongly altered by finite size effects.

This is illustrated in figure 6 showing some phase transition points from the FM to the SYM

phase as obtained from our numerical simulations on a 44-lattice (open squares), and on

an 84-lattice (open circles). One clearly observes that the phase transition line is shifted

towards smaller values of the hopping parameter when the lattice size is increased. This

effect can also be anticipated from the analytical computation of the phase transition line,

when one imposes finite lattices also for the minimization of the effective potential in the

large Nf approximation. Since we want to demonstrate the finite volume dependence here

isolated from the Nf -dependence, we present the numerical results for the (very large)

value of fermion generations Nf = 50 and compare them to the analytical Nf = ∞ phase
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Figure 5: The directFM-AFM phase transition at intermediate values of the Yukawa coupling

constant. We show, as a function of κN , the behaviour of the average magnetization 〈m〉 and

staggered magnetization 〈s〉 in panel (a). The parameters chosen are ỹN = 6.325, λ̃N = 0.1, L = 4,

and Nf = 10. Panels (b) and (c) show a tunneling event between two ground states which we

take as strong indication for the first order character of the phase transition. The plots show m in

panel (b) and s in panel (c), respectively, versus the Monte-Carlo time at the hopping parameter

κN = −0.196 being very close to its critical value.

transition lines obtained for L = 4 (dotted line), L = 8 (dashed line), and L = ∞ (solid

line). The analytical lines perfectly describe the numerical results and one clearly observes

the convergence of the numerical results to the analytically predicted L = ∞ line as the

lattice size increases.

However, one remark is in order here for the orientation of the reader, which concerns

the large Nf -computation of the phase transition points in a finite volume: The fermionic

determinant det(M) with M given in eq. (2.2) becomes, on a finite lattice, identical to

zero for completely vanishing Higgs field. On infinite lattices the zero modes of D(ov) form

a set of only zero measure and the integral entering the effective action can be shown to

converge, such that there actually is a symmetric phase on infinite lattices. For finite L

we therefore cannot determine the phase transition by simply searching that value of the

hopping parameter, where the average magnetization vanishes. Instead we search for that

κN , where the minimum of the effective action Seff becomes flattest, i.e. where the second

derivative of Seff with respect to the magnetization becomes minimal at the location of the

minimum. Since the Higgs field oscillates the stronger around the minimum of the effective

action the smaller its second derivative is, this approach corresponds to finding the phase

transition point by searching for the maximum of the susceptibility.

The Nf -dependence of the numerically obtained critical hopping parameters κm
crit and

κs
crit is shown in figure 7 for several selected values of the Yukawa coupling constant. One

clearly sees that for increasing Nf the numerical results converge very well to the analytical

finite volume predictions, as expected. It is interesting to note that the leading term in the

finite Nf corrections, i.e. the 1/Nf contribution, seems to be the only relevant correction

here, even at the small value Nf = 2, as can be seen in figure 7 by fitting the deviations to

the function fm,s(Nf ) = Am,s/Nf with Am,s being the only free parameter. Furthermore,

one observes that the critical hopping parameter κm
crit is shifted towards larger values with

decreasing Nf while κs
crit is shifted towards smaller values.
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Figure 7: The Nf -dependence of the critical hopping parameters κm
crit

, κs
crit

for the selected Yukawa

coupling parameters ỹN = 0.0 (a), ỹN = 1.0 (b), and ỹN = 2.0 (c). The data with square symbols

were measured on an 84-lattice while those represented by circles were obtained on 64-lattices. The

analytical, finite volume, large Nf predictions for the SYM-FM (SYM-AFM) phase transitions are

represented by the dashed (dotted) lines. The dash-dotted lines are fits of the numerical data to

the function fm,s(Nf ) = Am,s/Nf + Bm,s where Bm,s is set to the actual analytical prediction and

Am,s is the only free fitting parameter. The results were computed for λ̃N = 0.1.

From our findings in this section we finally conclude that the structure of the phase

diagram of the considered Higgs-Yukawa model at small values of the Yukawa coupling

constant can be very well predicted on a qualitative level by the results of our large Nf

analysis. It also gives a very good understanding of the encountered finite volume effects.

4. Results for large Yukawa coupling constant

In this section we want to address the region of large Yukawa coupling constants, i.e. yN ≫
1. From our large Nf calculations we expect here a ferromagnetic, an anti-ferromagnetic

and a symmetric phase. The large Nf calculation also revealed that significant finite size
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Figure 8: The behaviour of the average magnetization 〈m〉 and staggered magnetization 〈s〉 as

a function of κN on a 44- (a), 84- (b) and 164-lattice (c). In the plots we have chosen ỹN = 30,

λ̃N = 0.1 and Nf = 2.

effects can be present in the symmetric phase which may render its detection difficult. This

large Nf approach was carried out by scaling the Higgs field and the coupling constants

according to

yN = ỹN , λN =
λ̃N

Nf
, κN =

κ̃N

Nf
, Φn =

√

Nf · Φ̃n , (4.1)

where the quantities ỹN , λ̃N , κ̃N , and Φ̃n were held constant in the limit Nf → ∞.

In figure 8, we show the numerically obtained values for the average magnetizations 〈m〉
and 〈s〉 on various sized lattices as a function of κN for a large value of the Yukawa coupling

constant yN = 30. Figure 8 demonstrates that indeed the symmetric phase emerges only

on sufficiently large lattices, while on small lattices the magnetization does not vanish as

a function of decreasing κN even deeply within the anti-ferromagnetic phase. Instead 〈m〉
reaches a plateau with a clearly non-vanishing value in the limit κN → −∞. This becomes

especially well observable for the smallest considered lattice, the 44-lattice presented in

figure 8a. Thus, one may erroneously conclude that there is no symmetric phase at large

values of the Yukawa coupling constant, if one considers too small lattices. However, the

plateau value of 〈m〉 is fully consistent with our analytical results predicting a finite volume

effect causing a non-vanishing magnetization 〈m〉 > 0 also for arbitrarily negative values

of κN . To demonstrate this latter statement we restate here one result of ref. [25] for the

effective action of a field configuration in terms of its magnetizations m and s in the large

yN -limit, reading

Seff [Φ] = SΦ −Nf ·
∑

n

8 log

∣
∣
∣
∣
m + s · (−1)

P

µ
nµ

∣
∣
∣
∣
−Nf · 8 log |m̃| −Nf · 56 log

∣
∣m̃2 − s̃2

∣
∣ (4.2)

with the abbreviations

m̃ =
m

m2 − s2
and s̃ =

s

s2 − m2
. (4.3)

Considering only the ground state of this effective action one cannot correctly predict the

phase transition of the model, as discussed in ref. [25]. However, it is sufficient to correctly

predict the behaviour of 〈m〉 and 〈s〉 in the limit of large negative (and positive) values of

the hopping parameter κN , as demonstrated in figure 9, where we plot again the average

magnetizations for the 44-lattice together with the finite volume analytical expectations,
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Figure 9: Comparison with finite size expectations. We show again the average magnetizations

〈m〉 and 〈s〉 of figure 8a as obtained on the 44-lattice at ỹN = 30, λ̃N = 0.1, and Nf = 2. We com-

pare these magnetizations to the analytical predictions for 〈m〉 (dashed line) and 〈s〉 (dotted line)

computed by minimizing the effective, large yN action of eq. (4.2). Panel (b) is just a magnification

of plot (a).
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Figure 10: The behaviour of the magnetic susceptibility χm as a function of the hopping parameter

κN on a 44- (a), 84- (b) and 164-lattice (c). In the plots we have chosen ỹN = 30, λ̃N = 0.1 and

Nf = 2. The fit in panel (b) is only applied to those points with κN ≥ 0.025 or κN ≤ −0.05 in

order to reduce the influence of the unphysical peak at κN = 0.0. Note the changing scale in the

three plots.

obtained by minimizing the effective action of eq. (4.2). The convergence of the numerical

results to the analytical finite volume prediction is very well observed in figure 9b.

We remark that the non-vanishing plateau as well as the asymmetry in 〈m〉 and 〈s〉 are

both caused by the term log |m̃| appearing in eq. (4.2). This term as well as the very last

one in this equation do, however, not scale proportional to the volume L4 in contrast to

all other contributions to the effective action. Its influence therefore eventually disappears

as the lattice size increases. This is exactly what is observed here.

In figure 10 we show the susceptibilities χm corresponding to the magnetizations in

figure 8. For the smallest lattice, i.e. the 44-lattice, one observes only one peak in the mag-

netic susceptibility, centered at κN = 0. From this result one could conclude that the phase

transition point is located at κN = 0, excluding a symmetric phase, since the staggered sus-

ceptibility reaches its maximum at the same value of κN . However, with increasing lattice

sizes a second peak develops in the susceptibilities. This is very well observed in figure 9b

corresponding to the larger 84-lattice. It shows that indeed two distinct peaks emerge on

this intermediate lattice. It is actually this second peak, centered around κN = 0.04 in this
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Figure 11: The phase diagram for large values of the Yukawa coupling constant. We show the

numerical results for the phase transition points to the ferromagnetic phase as obtained on an

84-lattice at λ̃N = 0.1, and Nf = 2. We could not reliably determine the phase transition points

to the anti-ferromagnetic phase, as explained in the main text. We compare these results to the

prediction of our large Nf calculation for the SYM-FM transition (dashed line). The SYM-AFM

phase transition is marked by the dotted line.

case, that correctly describes the physical phase transition between the ferromagnetic and

the symmetric phase, while the first one is only caused by the finite volume terms discussed

in [25], which do not scale with the lattice volume. Its height is therefore at most constant

in contrast to the physical peak, which grows with increasing lattice volume. On the largest

presented lattice, the 164-lattice, the physical peak at κN = 0.04 completely dominates the

scene and the former small volume peak at κN = 0 has disappeared, presumably hidden

beneath the large error bars at κN = 0.

We have then determined the SYM-FM phase transition points by fitting the physical

peaks in the magnetic susceptibility χm on the intermediate 84-lattices to the finite volume

expectation in eq. (3.2) by taking only the points belonging to the physical peak into

account as demonstrated in figure 10b. We remark here that we do not provide any data

for the SYM-AFM phase transition because the phase transition is not reliably detectable

on the 64-lattice, due to the finite volume effects discussed above, and the 84-simulations

are not practicable in the anti-ferromagnetic phase with our algorithm as explained in

section 3.

In figure 11 we finally summarize the obtained phase transition points together with

the analytical Nf = ∞, L = ∞ expectation of the phase structure at large values of

the Yukawa coupling constant. Qualitatively, the picture we obtain from the numerical

simulations is in full accordance with the results from the large Nf approximation: there

are second order phase transitions separating a ferromagnetic phase from a symmetric

phase. In this symmetric phase strong finite size effects are encountered such that only

for large lattice sizes this symmetric phase can be identified. Quantitatively, the numerical

results deviate from the analytical expectation due to the finite settings Nf = 2 and L = 8,

but are still in good agreement.

In this section we found that a symmetric phase at large values of the Yukawa coupling

constant does indeed exist although its existence is obscured on too small lattices by strong
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finite size effects, and that its location within the phase diagram is in good agreement with

the analytical large Nf predictions. We remark here that the existence of a symmetric

phase at strong Yukawa couplings has also been observed and discussed in ref. [22]. From

our findings we thus conclude that the analytical large Nf calculations describe the phase

structure of the considered Higgs-Yukawa model at large values of the Yukawa coupling

constant very well.

5. Summary and outlook

In this paper we have studied by numerical simulations the phase structure of a chirally

invariant lattice Higgs-Yukawa model, originally proposed by Lüscher, in order to check

the validity of our earlier analytical investigation of its phase structure. These earlier

calculations have been performed in the large Nf -limit for small and for large values of the

Yukawa coupling constant.

In section 3 we compared the numerical to the analytical results at small values of

the Yukawa coupling constant. We started with a discussion of the qualitative structure

of the phase diagram. For that purpose we presented our numerical results for the phase

transition lines obtained at Nf = 10 on some 84- and 64-lattices and compared them to

the analytically computed Nf = ∞, L = ∞ predictions. Qualitatively, the numerical and

analytical results are in very good agreement: As expected we clearly observe a symmetric

(SYM), a ferromagnetic (FM) and an anti-ferromagnetic (AFM) phase. With increasing

Yukawa coupling constant the symmetric phase strongly bends downwards to smaller val-

ues of the hopping parameter. In particular, we find that the obtained phase structure

resembles that of earlier Higgs-Yukawa models on a qualitative level. One peculiarity in

these types of models is the emergence of a ferrimagnetic (FI) phase with 〈m〉 > 0 and

〈s〉 > 0 deeply inside the anti-ferromagnetic phase. This phase was also predicted by the

analytical investigation of the model and it is located at the predicted position within the

phase diagram. Furthermore, the data also support very well the analytical expectations

concerning the order of the encountered phase transitions. The SYM-FM and the SYM-

AFM phase transitions were supposed to be of second order while the direct FM-AFM

transition was predicted to be of first order. Although we did not study that in great

detail, since this aspect was not in out main interest, the obtained lattice results are in

very good agreement with these analytical findings.

We then turned towards the quantitative discussion of the encountered deviations

between the numerical finite volume, finite Nf results and the presented analytical Nf = ∞,

L = ∞ calculations. Firstly, we showed that finite volume effects alter the location of the

phase transition lines strongly. In order to isolate the finite volume effects from the 1/Nf

corrections we presented numerical results for the phase transition points for the choice

of the very large number of fermion generations Nf = 50. In that setting we could show

that the finite volume effects are in excellent agreement with the analytical finite volume

predictions. We then demonstrated the strength of the 1/Nf corrections by presenting

the numerically obtained phase transition points at smaller values of Nf for some selected

Yukawa coupling parameters. We found that the 1/Nf corrections drive the critical hopping
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parameters towards larger values for the case of the SYM-FM phase transition and towards

smaller values for the SYM-AFM transition. Besides that these corrections do not change

the qualitative phase structure of the model.

We then discussed the phase structure at large values of the Yukawa coupling constant

in section 4. In particular we showed that there is actually a symmetric phase in this regime

of the Yukawa coupling constant and that it is located at the expected position within the

phase diagram. We also demonstrated that this symmetric phase becomes unobservable

on too small lattices due to strong finite volume effects, as derived in our earlier studies,

preventing the Higgs field expectation value from vanishing. We furthermore showed that

the behaviour of the magnetization at large negative (and positive) values of the hopping

parameter κN can be very well described by taking these finite volume contributions into

account. The emergence of the symmetric phase with increasing lattice size could also

clearly be observed in the presented plots of the magnetic susceptibility χm (figure 10).

Finally, we presented our numerical results for the critical hopping parameters κm
crit of the

SYM-FM phase transition at large Yukawa coupling constants. We compared them to the

analytical large Nf predictions and found them to be in good agreement even though the

numerical simulations were performed at Nf = 2.

We end with a short outlook about our next steps concerning the further investigation

of the presented Higgs-Yukawa model: We have started the implementation of a PHMC

algorithm [32] with which the simulation will become possible at arbitrary values of Nf ,

in particular at the physically interesting setting Nf = 1. Having the qualitative phase

diagram of the model at hand we will then search for the physical region of the parameter

space, reproducing the top quark mass, eventually allowing to find upper and lower bounds

for the Higgs boson mass.
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